Particle-wave duality and the two slit experiment

Particle-wave duality is the concept in quantum mechanics that small objects simultaneously behave a bit like particles and a bit like waves. This comes very naturally from the mathematics, but instead of talking about those boring details, I’m going to describe a famous experiment that proves it.


TwoSlitsIt’s called the two slit experiment, and I’ve sketched how it works in the picture on the right. Before going into the full details, let’s look at the upper part of the picture. This shows a light wave shining on a barrier with a small slit in it. The thin black lines show the position of the peaks of the wave that describes the traveling light. Some of the light can get through that slit, but in doing so, it changes its form to become a circular wave with the slit at its source. This is called diffraction, and leads to a distinctive pattern when the light hits a screen placed some way behind the barrier. The red line behind the barrier shows the intensity of the light hitting the screen. This demonstrates that light can behave in a wave-like way because if the light was just particles you would not see the diffraction pattern, but there would be a small spot of light on the screen in line with the slit.

Now look at the lower part of the picture. Now the screen has been replaced with a second barrier that has two slits in it. Both of these slits act like the first one: they diffract the light that is coming through. So behind the second barrier, there are now two waves of light, one coming from each slit. These two waves interfere with each other, so that the pattern of light seen on the screen (the red line) looks very different from that made by just one slit. (I did actually calculate what the light should look like before I drew these pictures, so I hope both of the red lines are actually correct!) Interference is the process of these wave adding together to form one single pattern. The value of a light wave at a particular position can be either positive or negative. In the picture, the thin black lines show where the waves are at their maximum – so where they are their most positive. Exactly half-way between a pair of lines they are at their most negative. If the two waves are both positive at a particular position (like exactly at the center of the screen) then they add together to give intense light. But if one is positive and one is negative then they will cancel each other out and leave almost no light.


That’s not very controversial. But it starts to get a bit more weird when you repeat the same experiment but using a beam of electrons instead of a beam of light. Electrons are one of the three types of “particle” which make up an atom: The protons and neutrons bind together to form the nucleus, and then electrons “orbit” around it. Until this experiment was done for the first time, most physicists thought that electrons were particles. But the result of the experiment was the same kind of two-slit diffraction pattern that they got when they used light. The electrons that went through each of the slits were interfering with each other just like the light waves did. The only possible conclusion: these electrons were also wave-like.

Then, they pushed the experiment a bit further. They had the same barriers, but instead of using a beam of electrons, they fired them through one at a time. Astonishingly, even though there was only one electron, the result was still a two-slit diffraction pattern. Somehow, the electron was going through both slits and interfering with itself. Conclusion: Electrons are not just wave-like when there are lots of them, they are wave-like on their own!

Now it gets weird

To try and verify this, they modified their apparatus to include detectors at both of the slits so they could tell which slit the electron was going though. Expecting to find a signal from both detectors, they were surprised to find that only one of the detectors sensed an electron going though, and instead of the two-slit diffraction pattern, they now saw a one-slit pattern on the screen. If they did the experiment with the detectors turned off, the two-slit diffraction pattern reappeared. It seemed like asking the electron which slit it had gone through forced it to choose one or the other. But get this: The experimentalists got sneaky. They took the electron detectors away and instead made slits that could be opened and closed very quickly. Starting with both slits open, they fired one electron from the gun. After it had passed the barrier with the two slits, but before it reached the screen, they closed one of the slits. Any guesses as to what pattern was measured on the screen?

They saw a single-slit diffraction pattern! Somehow, the electron knew that one of the slits had been closed after it went through, and behaved like only the other one had been open the whole time. This hints at many deep issues about quantum measurement and (gulp!) the nature of reality itself. But I’ll save that discussion for another time.

This experiment has been repeated with many different objects used instead of the light or electrons. Protons, whole atoms, and buckyballs all show the same behavior, so this is without doubt a general feature in quantum mechanics and not something oddly specific to light and electrons. In fact, once you allow for the possibility of wave-like particles, you start to see the effects of them in many places, including in the behavior of electrons in the materials which make computer chips and all the rest of information technology. So it’s a pretty big deal.

And finally…

One final point of detail which I think is worth pointing out. In the first paragraph, I mentioned that “small objects” are needed to do this experiment. But what does “small” mean in this context? It turns out, this can be written down in a really simple equation. The de Broglie wavelength, referred to by the symbol \lambda, is the wavelength associated with the quantum object. It turns out, that to see the wave-like properties, the size of the slits has to be similar to \lambda.

The formula is \lambda = h / mv. Here, h is just a number that comes from quantum mechanics and can be forgotten about. The m and v are the mass and speed associated with the particle-like properties of the object. So, the heavier the “particle”, the smaller the associated wavelength is. This explains why you don’t see any wave-like effects for people or cars or golf balls. Just to illustrate the kind of size that we talking about, light has a \lambda of half a micron or so. For electrons, it’s a few nanometers, and for buckyballs, it’s a few thousandths of a nanometer.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s