What is condensed matter theory, and why is it so hard?

This post is about the general approach to physics that people who work on the theory of condensed matter take. As I’ll explain, it is basically impossible to calculate anything exactly, and so the whole field relies on choosing smart approximations that allow you to make some progress. Exactly what kind of approximations you make depends on what you want to achieve, and I’ll describe some of the common ones below.

But before that, what is ‘condensed matter physics’? Roughly speaking, it refers to anything that is a solid or a liquid (and also some gases) that you can see in the Real World around you. So it’s not stars and galaxies and space exploration, it’s not tiny sub-atomic particles like quarks and higgs bosons like they talk about at CERN, and it’s not what happened in the first fractions of a second after the Big Bang, or what it’s like inside a black hole. But it is about the materials that make the chip inside your phone or power a laser, or about making batteries store energy more efficiently, or finding new catalysts that make industrial chemical production cheaper (okay, so that one crosses into chemistry as well, but the lines are fuzzy!), or its about making superconductivity work at higher temperatures.

Why is it so hard?

Really, what makes condensed matter physics different from many other types of physics is that in many situations, the behaviour of the materials is governed by how many many particles interact with each other. Think about a small piece of metal for instance: You have millions and millions of atoms that form some bonds which give it a solid shape. Then some of the electrons in those atoms disassociate themselves and become a bit like a liquid that can move around inside the metal and conduct electricity or heat, or make the metal magnetic. In a small piece of metal there will be 10^22 atoms. (That notation means that the number is a one with twenty two zeroes after it. So it’s a lot.) And all of these atoms have an electric field which is felt by all the other atoms so that they all interact with each other. It is, in principle, possible to write down some equations which describe this, but there is no way that anyone can make a solution for these equations and work out exactly how all these atoms and electrons behave. I don’t just mean that it’s very difficult, I mean that it is mathematically proven to be impossible!

Watcha gunna do?

So, that begs the question what can we do? It is easy to connect a bit of metal to a battery and a current meter and see that it can conduct electricity, but how do we describe that theoretically? There are several different approaches to making the approximations needed, so I’ll try to explain them now.

  1. Use symmetry. By the magic of mathematics, the equations can often be simplified if you know something about the symmetry of the material you want to investigate. For example, the atoms in many metals sort themselves into a crystal lattice of repeated cubes. Group theory can then be used to reduce the complexity of the equations in a very helpful way. For instance, it might be possible to tell whether a material will conduct electricity or not even at this level of approximation. But this symmetry analysis contains an assumption because in reality materials won’t completely conform to the symmetry. They may have impurities in them, or the crystal structure might have irregularities, for example. So this isn’t a magic bullet. And also this might well not reduce the equations enough that they can be solved, so it is usually just a first step.

    cube_symmetry
    Symmetries of a cube. Image stolen from this page, which looks pretty cool!
  2. From this point, it is often possible to make simplifying assumptions so that the mathematically impossible theory becomes something that can be solved. Of course, by doing this you lose quite a lot of detail. It’s like the “spherical cows” analogy. In principle, cows have four legs, a tail, a head, and maybe some udders. But say you wanted to work out how many cows you could safely fit into a field. You don’t need to know any of that detail, so you can think of the cows as being a sphere which consumes a certain amount of hay each day. You can do something similar about the metal: Instead of keeping track of every detail, you can forget that the atoms have an internal structure (spherical atoms!). Or you could assume that the atoms interact with the electrons in a particularly simple way so that you can focus just on the disassociated electrons. Or you could assume that the electrons don’t interact with each other, but only with the atoms. In the jargon of the field, this general approach is called finding an “effective theory”. These theories can often give quite good estimates of not only whether a material will conduct, but how well it will do it.

    SphericalCows
    Some spherical cows in a field.
  3. These days, computers are really fast, and they can be used to numerically solve equations that are almost exact. However, computers are not good enough that they can do this for 10^22 atoms, so if you want to keep quite close to the original equations, they might be able to do fifty or so. Maybe a hundred. In the jargon, these methods are called “ab-initio” (from the beginning) because they do not make any approximations unless they absolutely have to. The fact that you can’t treat too many atoms limits what these methods can be applied to. For instance, they can be quite good for molecules, and crystals where the periodic repetition is not too complicated. But for these situations, you can get a level of detail which is simply impossible in the effective theories. So there’s a trade-off. And computers are getting better all the time so this is one area that will see a lot of progress.
  4. The final way that I’ll describe is sort-of the inverse process. Instead of starting from the mathematics which are impossible, you can start from experimental data and try to work backwards towards the theoretical description that gives you the right answer. Sometimes this is used in conjunction with one of the other methods as a way to give you some clues about what assumptions to make.

So, that’s how you do theory in condensed matter. Numbers 2 and 4 are basically my day job, on a good day at least!

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s